CD8+ T cells regulate bone tumor burden independent of osteoclast resorption.

نویسندگان

  • Kaihua Zhang
  • Seokho Kim
  • Viviana Cremasco
  • Angela C Hirbe
  • Lynne Collins
  • David Piwnica-Worms
  • Deborah V Novack
  • Katherine Weilbaecher
  • Roberta Faccio
چکیده

Blockade of osteoclast (OC) activity efficiently decreases tumor burden as well as associated bone erosion in immune-compromised animals bearing human osteolytic cancers. In this study, we showed that modulation of antitumor T-cell responses alters tumor growth in bone, regardless of OC status, by using genetic and pharmacologic models. PLCγ2(-/-) mice, with dysfunctional OCs and impaired dendritic cell (DC)-mediated T-cell activation, had increased bone tumor burden despite protection from bone loss. In contrast, Lyn(-/-) mice, with more numerous OCs and a hyperactive myeloid population leading to increased T-cell responses, had reduced tumor growth in bone despite enhanced osteolysis. The unexpected tumor/bone phenotype observed in PLCγ2(-/-) and Lyn(-/-) mice was transplantable, suggesting the involvement of an immune component. Consistent with this hypothesis, T-cell activation diminished skeletal metastasis whereas T-cell depletion enhanced it, even in the presence of zoledronic acid, a potent antiresorptive agent. Importantly, injection of antigen-specific wild-type cytotoxic CD8(+) T cells in PLCγ2(-/-) mice or CD8(+) T-cell depletion in Lyn(-/-) mice normalized tumor growth in bone. Our findings show the important contribution of CD8(+) T cells in the regulation of bone metastases regardless of OC status, thus including T cells as critical regulators of tumor growth in bone.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microenvironment and Immunology CD8þ T Cells Regulate Bone Tumor Burden Independent of Osteoclast Resorption

Blockade of osteoclast (OC) activity efficiently decreases tumor burden as well as associated bone erosion in immune-compromised animals bearing human osteolytic cancers. In this study, we showed that modulation of antitumor T-cell responses alters tumor growth in bone, regardless of OC status, by using genetic and pharmacologic models. PLCg2 / mice, with dysfunctional OCs and impaired dendriti...

متن کامل

Osteoclast Activated FoxP3+ CD8+ T-Cells Suppress Bone Resorption in vitro

BACKGROUND Osteoclasts are the body's sole bone resorbing cells. Cytokines produced by pro-inflammatory effector T-cells (T(EFF)) increase bone resorption by osteoclasts. Prolonged exposure to the T(EFF) produced cytokines leads to bone erosion diseases such as osteoporosis and rheumatoid arthritis. The crosstalk between T-cells and osteoclasts has been termed osteoimmunology. We have previousl...

متن کامل

Nuclear factor-kappaB-dependent mechanisms in breast cancer cells regulate tumor burden and osteolysis in bone.

A central mediator of a wide host of target genes, the nuclear factor-kappaB (NF-kappaB) family of transcription factors, has emerged as a molecular target in cancer and diseases associated with bone destruction. To evaluate how NF-kappaB signaling in tumor cells regulates processes associated with osteolytic bone tumor burden, we stably infected the bone-seeking MDA-MB-231 breast cancer cell l...

متن کامل

Tumor AvB3 Integrin Is a Therapeutic Target for Breast Cancer Bone Metastases

In breast cancer bone metastasis, tumor cells stimulate osteoclast-mediated bone resorption, and bone-derived growth factors released from resorbed bone stimulate tumor growth. The AvB3 integrin is an adhesion receptor expressed by breast cancer cells and osteoclasts. It is implicated in tumor cell invasion and osteoclast-mediated bone resorption. Here, we hypothesized that the therapeutic targ...

متن کامل

An osteoprotegerin-like peptidomimetic inhibits osteoclastic bone resorption and osteolytic bone disease in myeloma.

Multiple myeloma is a B-cell malignancy characterized by the uncontrolled growth of plasma cells in the bone marrow and the development of osteolytic bone disease. Myeloma cells express the receptor activator of nuclear factor kappaB ligand (RANKL), induce RANKL expression in the bone marrow, and down-regulate expression of the decoy receptor osteoprotegerin, thereby promoting bone resorption. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 71 14  شماره 

صفحات  -

تاریخ انتشار 2011